Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
nfralwOLD
Metamath Proof Explorer
Description: Obsolete version of nfralw as of 13-Dec-2024. (Contributed by NM , 1-Sep-1999) (Revised by GG , 10-Jan-2024)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Hypotheses
nfralw.1
⊢ Ⅎ _ x A
nfralw.2
⊢ Ⅎ x φ
Assertion
nfralwOLD
⊢ Ⅎ x ∀ y ∈ A φ
Proof
Step
Hyp
Ref
Expression
1
nfralw.1
⊢ Ⅎ _ x A
2
nfralw.2
⊢ Ⅎ x φ
3
nftru
⊢ Ⅎ y ⊤
4
1
a1i
⊢ ⊤ → Ⅎ _ x A
5
2
a1i
⊢ ⊤ → Ⅎ x φ
6
3 4 5
nfraldw
⊢ ⊤ → Ⅎ x ∀ y ∈ A φ
7
6
mptru
⊢ Ⅎ x ∀ y ∈ A φ