Metamath Proof Explorer


Theorem nfrdg

Description: Bound-variable hypothesis builder for the recursive definition generator. (Contributed by NM, 14-Sep-2003) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Hypotheses nfrdg.1 _ x F
nfrdg.2 _ x A
Assertion nfrdg _ x rec F A

Proof

Step Hyp Ref Expression
1 nfrdg.1 _ x F
2 nfrdg.2 _ x A
3 df-rdg rec F A = recs g V if g = A if Lim dom g ran g F g dom g
4 nfcv _ x V
5 nfv x g =
6 nfv x Lim dom g
7 nfcv _ x ran g
8 nfcv _ x g dom g
9 1 8 nffv _ x F g dom g
10 6 7 9 nfif _ x if Lim dom g ran g F g dom g
11 5 2 10 nfif _ x if g = A if Lim dom g ran g F g dom g
12 4 11 nfmpt _ x g V if g = A if Lim dom g ran g F g dom g
13 12 nfrecs _ x recs g V if g = A if Lim dom g ran g F g dom g
14 3 13 nfcxfr _ x rec F A