Metamath Proof Explorer


Theorem nfres

Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypotheses nfres.1 _ x A
nfres.2 _ x B
Assertion nfres _ x A B

Proof

Step Hyp Ref Expression
1 nfres.1 _ x A
2 nfres.2 _ x B
3 df-res A B = A B × V
4 nfcv _ x V
5 2 4 nfxp _ x B × V
6 1 5 nfin _ x A B × V
7 3 6 nfcxfr _ x A B