Metamath Proof Explorer


Theorem nfreud

Description: Deduction version of nfreu . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Feb-2013) (Revised by Mario Carneiro, 8-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfreud.1 y φ
nfreud.2 φ _ x A
nfreud.3 φ x ψ
Assertion nfreud φ x ∃! y A ψ

Proof

Step Hyp Ref Expression
1 nfreud.1 y φ
2 nfreud.2 φ _ x A
3 nfreud.3 φ x ψ
4 df-reu ∃! y A ψ ∃! y y A ψ
5 nfcvf ¬ x x = y _ x y
6 5 adantl φ ¬ x x = y _ x y
7 2 adantr φ ¬ x x = y _ x A
8 6 7 nfeld φ ¬ x x = y x y A
9 3 adantr φ ¬ x x = y x ψ
10 8 9 nfand φ ¬ x x = y x y A ψ
11 1 10 nfeud2 φ x ∃! y y A ψ
12 4 11 nfxfrd φ x ∃! y A ψ