Metamath Proof Explorer


Theorem nfrexdg

Description: Deduction version of nfrexg . Usage of this theorem is discouraged because it depends on ax-13 . See nfrexd for a version with a disjoint variable condition, but not requiring ax-13 . (Contributed by Mario Carneiro, 14-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfrexdg.1 y φ
nfrexdg.2 φ _ x A
nfrexdg.3 φ x ψ
Assertion nfrexdg φ x y A ψ

Proof

Step Hyp Ref Expression
1 nfrexdg.1 y φ
2 nfrexdg.2 φ _ x A
3 nfrexdg.3 φ x ψ
4 dfrex2 y A ψ ¬ y A ¬ ψ
5 3 nfnd φ x ¬ ψ
6 1 2 5 nfrald φ x y A ¬ ψ
7 6 nfnd φ x ¬ y A ¬ ψ
8 4 7 nfxfrd φ x y A ψ