Metamath Proof Explorer


Theorem nfrgr2v

Description: Any graph with two (different) vertices is not a friendship graph. (Contributed by Alexander van der Vekens, 30-Sep-2017) (Proof shortened by Alexander van der Vekens, 13-Sep-2018) (Revised by AV, 29-Mar-2021)

Ref Expression
Assertion nfrgr2v A X B Y A B Vtx G = A B G FriendGraph

Proof

Step Hyp Ref Expression
1 neirr ¬ A A
2 eqid Edg G = Edg G
3 2 usgredgne G USGraph A A Edg G A A
4 3 ex G USGraph A A Edg G A A
5 1 4 mtoi G USGraph ¬ A A Edg G
6 5 adantl A X B Y A B G USGraph ¬ A A Edg G
7 6 intnanrd A X B Y A B G USGraph ¬ A A Edg G A B Edg G
8 prex A A V
9 prex A B V
10 8 9 prss A A Edg G A B Edg G A A A B Edg G
11 7 10 sylnib A X B Y A B G USGraph ¬ A A A B Edg G
12 neirr ¬ B B
13 2 usgredgne G USGraph B B Edg G B B
14 13 ex G USGraph B B Edg G B B
15 12 14 mtoi G USGraph ¬ B B Edg G
16 15 adantl A X B Y A B G USGraph ¬ B B Edg G
17 16 intnand A X B Y A B G USGraph ¬ B A Edg G B B Edg G
18 prex B A V
19 prex B B V
20 18 19 prss B A Edg G B B Edg G B A B B Edg G
21 17 20 sylnib A X B Y A B G USGraph ¬ B A B B Edg G
22 ioran ¬ A A A B Edg G B A B B Edg G ¬ A A A B Edg G ¬ B A B B Edg G
23 11 21 22 sylanbrc A X B Y A B G USGraph ¬ A A A B Edg G B A B B Edg G
24 preq1 x = A x A = A A
25 preq1 x = A x B = A B
26 24 25 preq12d x = A x A x B = A A A B
27 26 sseq1d x = A x A x B Edg G A A A B Edg G
28 preq1 x = B x A = B A
29 preq1 x = B x B = B B
30 28 29 preq12d x = B x A x B = B A B B
31 30 sseq1d x = B x A x B Edg G B A B B Edg G
32 27 31 rexprg A X B Y x A B x A x B Edg G A A A B Edg G B A B B Edg G
33 32 3adant3 A X B Y A B x A B x A x B Edg G A A A B Edg G B A B B Edg G
34 33 adantr A X B Y A B G USGraph x A B x A x B Edg G A A A B Edg G B A B B Edg G
35 23 34 mtbird A X B Y A B G USGraph ¬ x A B x A x B Edg G
36 reurex ∃! x A B x A x B Edg G x A B x A x B Edg G
37 35 36 nsyl A X B Y A B G USGraph ¬ ∃! x A B x A x B Edg G
38 37 orcd A X B Y A B G USGraph ¬ ∃! x A B x A x B Edg G ¬ ∃! x A B x B x A Edg G
39 rexnal l A B A ¬ ∃! x A B x A x l Edg G ¬ l A B A ∃! x A B x A x l Edg G
40 39 bicomi ¬ l A B A ∃! x A B x A x l Edg G l A B A ¬ ∃! x A B x A x l Edg G
41 40 a1i A X B Y A B G USGraph ¬ l A B A ∃! x A B x A x l Edg G l A B A ¬ ∃! x A B x A x l Edg G
42 difprsn1 A B A B A = B
43 42 3ad2ant3 A X B Y A B A B A = B
44 43 adantr A X B Y A B G USGraph A B A = B
45 44 rexeqdv A X B Y A B G USGraph l A B A ¬ ∃! x A B x A x l Edg G l B ¬ ∃! x A B x A x l Edg G
46 preq2 l = B x l = x B
47 46 preq2d l = B x A x l = x A x B
48 47 sseq1d l = B x A x l Edg G x A x B Edg G
49 48 reubidv l = B ∃! x A B x A x l Edg G ∃! x A B x A x B Edg G
50 49 notbid l = B ¬ ∃! x A B x A x l Edg G ¬ ∃! x A B x A x B Edg G
51 50 rexsng B Y l B ¬ ∃! x A B x A x l Edg G ¬ ∃! x A B x A x B Edg G
52 51 3ad2ant2 A X B Y A B l B ¬ ∃! x A B x A x l Edg G ¬ ∃! x A B x A x B Edg G
53 52 adantr A X B Y A B G USGraph l B ¬ ∃! x A B x A x l Edg G ¬ ∃! x A B x A x B Edg G
54 41 45 53 3bitrd A X B Y A B G USGraph ¬ l A B A ∃! x A B x A x l Edg G ¬ ∃! x A B x A x B Edg G
55 rexnal l A B B ¬ ∃! x A B x B x l Edg G ¬ l A B B ∃! x A B x B x l Edg G
56 55 bicomi ¬ l A B B ∃! x A B x B x l Edg G l A B B ¬ ∃! x A B x B x l Edg G
57 56 a1i A X B Y A B G USGraph ¬ l A B B ∃! x A B x B x l Edg G l A B B ¬ ∃! x A B x B x l Edg G
58 difprsn2 A B A B B = A
59 58 3ad2ant3 A X B Y A B A B B = A
60 59 adantr A X B Y A B G USGraph A B B = A
61 60 rexeqdv A X B Y A B G USGraph l A B B ¬ ∃! x A B x B x l Edg G l A ¬ ∃! x A B x B x l Edg G
62 preq2 l = A x l = x A
63 62 preq2d l = A x B x l = x B x A
64 63 sseq1d l = A x B x l Edg G x B x A Edg G
65 64 reubidv l = A ∃! x A B x B x l Edg G ∃! x A B x B x A Edg G
66 65 notbid l = A ¬ ∃! x A B x B x l Edg G ¬ ∃! x A B x B x A Edg G
67 66 rexsng A X l A ¬ ∃! x A B x B x l Edg G ¬ ∃! x A B x B x A Edg G
68 67 3ad2ant1 A X B Y A B l A ¬ ∃! x A B x B x l Edg G ¬ ∃! x A B x B x A Edg G
69 68 adantr A X B Y A B G USGraph l A ¬ ∃! x A B x B x l Edg G ¬ ∃! x A B x B x A Edg G
70 57 61 69 3bitrd A X B Y A B G USGraph ¬ l A B B ∃! x A B x B x l Edg G ¬ ∃! x A B x B x A Edg G
71 54 70 orbi12d A X B Y A B G USGraph ¬ l A B A ∃! x A B x A x l Edg G ¬ l A B B ∃! x A B x B x l Edg G ¬ ∃! x A B x A x B Edg G ¬ ∃! x A B x B x A Edg G
72 38 71 mpbird A X B Y A B G USGraph ¬ l A B A ∃! x A B x A x l Edg G ¬ l A B B ∃! x A B x B x l Edg G
73 sneq k = A k = A
74 73 difeq2d k = A A B k = A B A
75 preq2 k = A x k = x A
76 75 preq1d k = A x k x l = x A x l
77 76 sseq1d k = A x k x l Edg G x A x l Edg G
78 77 reubidv k = A ∃! x A B x k x l Edg G ∃! x A B x A x l Edg G
79 74 78 raleqbidv k = A l A B k ∃! x A B x k x l Edg G l A B A ∃! x A B x A x l Edg G
80 79 notbid k = A ¬ l A B k ∃! x A B x k x l Edg G ¬ l A B A ∃! x A B x A x l Edg G
81 sneq k = B k = B
82 81 difeq2d k = B A B k = A B B
83 preq2 k = B x k = x B
84 83 preq1d k = B x k x l = x B x l
85 84 sseq1d k = B x k x l Edg G x B x l Edg G
86 85 reubidv k = B ∃! x A B x k x l Edg G ∃! x A B x B x l Edg G
87 82 86 raleqbidv k = B l A B k ∃! x A B x k x l Edg G l A B B ∃! x A B x B x l Edg G
88 87 notbid k = B ¬ l A B k ∃! x A B x k x l Edg G ¬ l A B B ∃! x A B x B x l Edg G
89 80 88 rexprg A X B Y k A B ¬ l A B k ∃! x A B x k x l Edg G ¬ l A B A ∃! x A B x A x l Edg G ¬ l A B B ∃! x A B x B x l Edg G
90 89 3adant3 A X B Y A B k A B ¬ l A B k ∃! x A B x k x l Edg G ¬ l A B A ∃! x A B x A x l Edg G ¬ l A B B ∃! x A B x B x l Edg G
91 90 adantr A X B Y A B G USGraph k A B ¬ l A B k ∃! x A B x k x l Edg G ¬ l A B A ∃! x A B x A x l Edg G ¬ l A B B ∃! x A B x B x l Edg G
92 72 91 mpbird A X B Y A B G USGraph k A B ¬ l A B k ∃! x A B x k x l Edg G
93 rexnal k A B ¬ l A B k ∃! x A B x k x l Edg G ¬ k A B l A B k ∃! x A B x k x l Edg G
94 92 93 sylib A X B Y A B G USGraph ¬ k A B l A B k ∃! x A B x k x l Edg G
95 94 intnand A X B Y A B G USGraph ¬ G USGraph k A B l A B k ∃! x A B x k x l Edg G
96 95 adantlr A X B Y A B Vtx G = A B G USGraph ¬ G USGraph k A B l A B k ∃! x A B x k x l Edg G
97 id Vtx G = A B Vtx G = A B
98 difeq1 Vtx G = A B Vtx G k = A B k
99 reueq1 Vtx G = A B ∃! x Vtx G x k x l Edg G ∃! x A B x k x l Edg G
100 98 99 raleqbidv Vtx G = A B l Vtx G k ∃! x Vtx G x k x l Edg G l A B k ∃! x A B x k x l Edg G
101 97 100 raleqbidv Vtx G = A B k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G k A B l A B k ∃! x A B x k x l Edg G
102 101 anbi2d Vtx G = A B G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G G USGraph k A B l A B k ∃! x A B x k x l Edg G
103 102 notbid Vtx G = A B ¬ G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G ¬ G USGraph k A B l A B k ∃! x A B x k x l Edg G
104 103 adantl A X B Y A B Vtx G = A B ¬ G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G ¬ G USGraph k A B l A B k ∃! x A B x k x l Edg G
105 104 adantr A X B Y A B Vtx G = A B G USGraph ¬ G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G ¬ G USGraph k A B l A B k ∃! x A B x k x l Edg G
106 96 105 mpbird A X B Y A B Vtx G = A B G USGraph ¬ G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G
107 df-nel G FriendGraph ¬ G FriendGraph
108 eqid Vtx G = Vtx G
109 108 2 isfrgr G FriendGraph G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G
110 107 109 xchbinx G FriendGraph ¬ G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G
111 106 110 sylibr A X B Y A B Vtx G = A B G USGraph G FriendGraph
112 111 expcom G USGraph A X B Y A B Vtx G = A B G FriendGraph
113 frgrusgr G FriendGraph G USGraph
114 113 con3i ¬ G USGraph ¬ G FriendGraph
115 114 107 sylibr ¬ G USGraph G FriendGraph
116 115 a1d ¬ G USGraph A X B Y A B Vtx G = A B G FriendGraph
117 112 116 pm2.61i A X B Y A B Vtx G = A B G FriendGraph