Metamath Proof Explorer
		
		
		
		Description:  A variable not free in a wff remains so in a restricted iota descriptor.
       (Contributed by NM, 12-Oct-2011)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | nfriota.1 |  | 
					
						|  |  | nfriota.2 |  | 
				
					|  | Assertion | nfriota |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfriota.1 |  | 
						
							| 2 |  | nfriota.2 |  | 
						
							| 3 |  | nftru |  | 
						
							| 4 | 1 | a1i |  | 
						
							| 5 | 2 | a1i |  | 
						
							| 6 | 3 4 5 | nfriotadw |  | 
						
							| 7 | 6 | mptru |  |