Metamath Proof Explorer


Theorem nfrmo

Description: Bound-variable hypothesis builder for restricted uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfrmow when possible. (Contributed by NM, 16-Jun-2017) (New usage is discouraged.)

Ref Expression
Hypotheses nfreu.1 _ x A
nfreu.2 x φ
Assertion nfrmo x * y A φ

Proof

Step Hyp Ref Expression
1 nfreu.1 _ x A
2 nfreu.2 x φ
3 df-rmo * y A φ * y y A φ
4 nftru y
5 nfcvf ¬ x x = y _ x y
6 1 a1i ¬ x x = y _ x A
7 5 6 nfeld ¬ x x = y x y A
8 2 a1i ¬ x x = y x φ
9 7 8 nfand ¬ x x = y x y A φ
10 9 adantl ¬ x x = y x y A φ
11 4 10 nfmod2 x * y y A φ
12 11 mptru x * y y A φ
13 3 12 nfxfr x * y A φ