Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
nfrmo1
Next ⟩
nfreud
Metamath Proof Explorer
Ascii
Unicode
Theorem
nfrmo1
Description:
The setvar
x
is not free in
E* x e. A ph
.
(Contributed by
NM
, 16-Jun-2017)
Ref
Expression
Assertion
nfrmo1
⊢
Ⅎ
x
∃
*
x
∈
A
φ
Proof
Step
Hyp
Ref
Expression
1
df-rmo
⊢
∃
*
x
∈
A
φ
↔
∃
*
x
x
∈
A
∧
φ
2
nfmo1
⊢
Ⅎ
x
∃
*
x
x
∈
A
∧
φ
3
1
2
nfxfr
⊢
Ⅎ
x
∃
*
x
∈
A
φ