Metamath Proof Explorer


Theorem nfrmod

Description: Deduction version of nfrmo . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 17-Jun-2017) (New usage is discouraged.)

Ref Expression
Hypotheses nfreud.1 y φ
nfreud.2 φ _ x A
nfreud.3 φ x ψ
Assertion nfrmod φ x * y A ψ

Proof

Step Hyp Ref Expression
1 nfreud.1 y φ
2 nfreud.2 φ _ x A
3 nfreud.3 φ x ψ
4 df-rmo * y A ψ * y y A ψ
5 nfcvf ¬ x x = y _ x y
6 5 adantl φ ¬ x x = y _ x y
7 2 adantr φ ¬ x x = y _ x A
8 6 7 nfeld φ ¬ x x = y x y A
9 3 adantr φ ¬ x x = y x ψ
10 8 9 nfand φ ¬ x x = y x y A ψ
11 1 10 nfmod2 φ x * y y A ψ
12 4 11 nfxfrd φ x * y A ψ