Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
nfrmow
Metamath Proof Explorer
Description: Bound-variable hypothesis builder for restricted uniqueness. Version of
nfrmo with a disjoint variable condition, which does not require
ax-13 . (Contributed by NM , 16-Jun-2017) (Revised by Gino Giotto , 10-Jan-2024)
Ref
Expression
Hypotheses
nfreuw.1
⊢ Ⅎ _ x A
nfreuw.2
⊢ Ⅎ x φ
Assertion
nfrmow
⊢ Ⅎ x ∃ * y ∈ A φ
Proof
Step
Hyp
Ref
Expression
1
nfreuw.1
⊢ Ⅎ _ x A
2
nfreuw.2
⊢ Ⅎ x φ
3
df-rmo
⊢ ∃ * y ∈ A φ ↔ ∃ * y y ∈ A ∧ φ
4
nftru
⊢ Ⅎ y ⊤
5
nfcvd
⊢ ⊤ → Ⅎ _ x y
6
1
a1i
⊢ ⊤ → Ⅎ _ x A
7
5 6
nfeld
⊢ ⊤ → Ⅎ x y ∈ A
8
2
a1i
⊢ ⊤ → Ⅎ x φ
9
7 8
nfand
⊢ ⊤ → Ⅎ x y ∈ A ∧ φ
10
4 9
nfmodv
⊢ ⊤ → Ⅎ x ∃ * y y ∈ A ∧ φ
11
10
mptru
⊢ Ⅎ x ∃ * y y ∈ A ∧ φ
12
3 11
nfxfr
⊢ Ⅎ x ∃ * y ∈ A φ