Metamath Proof Explorer


Theorem nfrmow

Description: Bound-variable hypothesis builder for restricted uniqueness. Version of nfrmo with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfreuw.1 _ x A
nfreuw.2 x φ
Assertion nfrmow x * y A φ

Proof

Step Hyp Ref Expression
1 nfreuw.1 _ x A
2 nfreuw.2 x φ
3 df-rmo * y A φ * y y A φ
4 nftru y
5 nfcvd _ x y
6 1 a1i _ x A
7 5 6 nfeld x y A
8 2 a1i x φ
9 7 8 nfand x y A φ
10 4 9 nfmodv x * y y A φ
11 10 mptru x * y y A φ
12 3 11 nfxfr x * y A φ