Metamath Proof Explorer


Theorem nfrmow

Description: Bound-variable hypothesis builder for restricted uniqueness. Version of nfrmo with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 10-Jan-2024) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 21-Nov-2024)

Ref Expression
Hypotheses nfreuw.1 _ x A
nfreuw.2 x φ
Assertion nfrmow x * y A φ

Proof

Step Hyp Ref Expression
1 nfreuw.1 _ x A
2 nfreuw.2 x φ
3 df-rmo * y A φ * y y A φ
4 1 nfcri x y A
5 4 2 nfan x y A φ
6 5 nfmov x * y y A φ
7 3 6 nfxfr x * y A φ