Metamath Proof Explorer


Theorem nfs1f

Description: If x is not free in ph , it is not free in [ y / x ] ph . (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypothesis nfs1f.1 x φ
Assertion nfs1f x y x φ

Proof

Step Hyp Ref Expression
1 nfs1f.1 x φ
2 1 sbf y x φ φ
3 2 1 nfxfr x y x φ