Metamath Proof Explorer


Theorem nfsab

Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016) Add disjoint variable condition to avoid ax-13 . See nfsabg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypothesis nfsab.1 x φ
Assertion nfsab x z y | φ

Proof

Step Hyp Ref Expression
1 nfsab.1 x φ
2 1 nf5ri φ x φ
3 2 hbab z y | φ x z y | φ
4 3 nf5i x z y | φ