Metamath Proof Explorer


Theorem nfsb4t

Description: A variable not free in a proposition remains so after substitution in that proposition with a distinct variable (closed form of nfsb4 ). Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 7-Apr-2004) (Revised by Mario Carneiro, 4-Oct-2016) (Proof shortened by Wolf Lammen, 11-May-2018) (New usage is discouraged.)

Ref Expression
Assertion nfsb4t x z φ ¬ z z = y z y x φ

Proof

Step Hyp Ref Expression
1 sbequ12 x = y φ y x φ
2 1 sps x x = y φ y x φ
3 2 drnf2 x x = y z φ z y x φ
4 3 biimpd x x = y z φ z y x φ
5 4 spsd x x = y x z φ z y x φ
6 5 impcom x z φ x x = y z y x φ
7 6 a1d x z φ x x = y ¬ z z = y z y x φ
8 nfnf1 z z φ
9 8 nfal z x z φ
10 nfnae z ¬ x x = y
11 9 10 nfan z x z φ ¬ x x = y
12 nfa1 x x z φ
13 nfnae x ¬ x x = y
14 12 13 nfan x x z φ ¬ x x = y
15 sp x z φ z φ
16 15 adantr x z φ ¬ x x = y z φ
17 nfsb2 ¬ x x = y x y x φ
18 17 adantl x z φ ¬ x x = y x y x φ
19 1 a1i x z φ ¬ x x = y x = y φ y x φ
20 11 14 16 18 19 dvelimdf x z φ ¬ x x = y ¬ z z = y z y x φ
21 7 20 pm2.61dan x z φ ¬ z z = y z y x φ