Metamath Proof Explorer


Theorem nfsbc1d

Description: Deduction version of nfsbc1 . (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 12-Oct-2016)

Ref Expression
Hypothesis nfsbc1d.2 φ _ x A
Assertion nfsbc1d φ x [˙A / x]˙ ψ

Proof

Step Hyp Ref Expression
1 nfsbc1d.2 φ _ x A
2 df-sbc [˙A / x]˙ ψ A x | ψ
3 nfab1 _ x x | ψ
4 3 a1i φ _ x x | ψ
5 1 4 nfeld φ x A x | ψ
6 2 5 nfxfrd φ x [˙A / x]˙ ψ