Metamath Proof Explorer


Theorem nfsbcw

Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 7-Sep-2014) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfsbcw.1 _ x A
nfsbcw.2 x φ
Assertion nfsbcw x [˙A / y]˙ φ

Proof

Step Hyp Ref Expression
1 nfsbcw.1 _ x A
2 nfsbcw.2 x φ
3 nftru y
4 1 a1i _ x A
5 2 a1i x φ
6 3 4 5 nfsbcdw x [˙A / y]˙ φ
7 6 mptru x [˙A / y]˙ φ