Metamath Proof Explorer


Theorem nfseq

Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses nfseq.1 _ x M
nfseq.2 _ x + ˙
nfseq.3 _ x F
Assertion nfseq _ x seq M + ˙ F

Proof

Step Hyp Ref Expression
1 nfseq.1 _ x M
2 nfseq.2 _ x + ˙
3 nfseq.3 _ x F
4 df-seq seq M + ˙ F = rec z V , w V z + 1 w + ˙ F z + 1 M F M ω
5 nfcv _ x V
6 nfcv _ x z + 1
7 nfcv _ x w
8 3 6 nffv _ x F z + 1
9 7 2 8 nfov _ x w + ˙ F z + 1
10 6 9 nfop _ x z + 1 w + ˙ F z + 1
11 5 5 10 nfmpo _ x z V , w V z + 1 w + ˙ F z + 1
12 3 1 nffv _ x F M
13 1 12 nfop _ x M F M
14 11 13 nfrdg _ x rec z V , w V z + 1 w + ˙ F z + 1 M F M
15 nfcv _ x ω
16 14 15 nfima _ x rec z V , w V z + 1 w + ˙ F z + 1 M F M ω
17 4 16 nfcxfr _ x seq M + ˙ F