Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
nfsn
Next ⟩
csbsng
Metamath Proof Explorer
Ascii
Unicode
Theorem
nfsn
Description:
Bound-variable hypothesis builder for singletons.
(Contributed by
NM
, 14-Nov-1995)
Ref
Expression
Hypothesis
nfsn.1
⊢
Ⅎ
_
x
A
Assertion
nfsn
⊢
Ⅎ
_
x
A
Proof
Step
Hyp
Ref
Expression
1
nfsn.1
⊢
Ⅎ
_
x
A
2
dfsn2
⊢
A
=
A
A
3
1
1
nfpr
⊢
Ⅎ
_
x
A
A
4
2
3
nfcxfr
⊢
Ⅎ
_
x
A