Metamath Proof Explorer


Theorem nfso

Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015)

Ref Expression
Hypotheses nfpo.r _ x R
nfpo.a _ x A
Assertion nfso x R Or A

Proof

Step Hyp Ref Expression
1 nfpo.r _ x R
2 nfpo.a _ x A
3 df-so R Or A R Po A a A b A a R b a = b b R a
4 1 2 nfpo x R Po A
5 nfcv _ x a
6 nfcv _ x b
7 5 1 6 nfbr x a R b
8 nfv x a = b
9 6 1 5 nfbr x b R a
10 7 8 9 nf3or x a R b a = b b R a
11 2 10 nfralw x b A a R b a = b b R a
12 2 11 nfralw x a A b A a R b a = b b R a
13 4 12 nfan x R Po A a A b A a R b a = b b R a
14 3 13 nfxfr x R Or A