Metamath Proof Explorer


Theorem nfsup

Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014)

Ref Expression
Hypotheses nfsup.1 _ x A
nfsup.2 _ x B
nfsup.3 _ x R
Assertion nfsup _ x sup A B R

Proof

Step Hyp Ref Expression
1 nfsup.1 _ x A
2 nfsup.2 _ x B
3 nfsup.3 _ x R
4 dfsup2 sup A B R = B R -1 A R B R -1 A
5 3 nfcnv _ x R -1
6 5 1 nfima _ x R -1 A
7 2 6 nfdif _ x B R -1 A
8 3 7 nfima _ x R B R -1 A
9 6 8 nfun _ x R -1 A R B R -1 A
10 2 9 nfdif _ x B R -1 A R B R -1 A
11 10 nfuni _ x B R -1 A R B R -1 A
12 4 11 nfcxfr _ x sup A B R