Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Supremum and infimum
nfsup
Next ⟩
supmo
Metamath Proof Explorer
Ascii
Unicode
Theorem
nfsup
Description:
Hypothesis builder for supremum.
(Contributed by
Mario Carneiro
, 20-Mar-2014)
Ref
Expression
Hypotheses
nfsup.1
⊢
Ⅎ
_
x
A
nfsup.2
⊢
Ⅎ
_
x
B
nfsup.3
⊢
Ⅎ
_
x
R
Assertion
nfsup
⊢
Ⅎ
_
x
sup
A
B
R
Proof
Step
Hyp
Ref
Expression
1
nfsup.1
⊢
Ⅎ
_
x
A
2
nfsup.2
⊢
Ⅎ
_
x
B
3
nfsup.3
⊢
Ⅎ
_
x
R
4
dfsup2
⊢
sup
A
B
R
=
⋃
B
∖
R
-1
A
∪
R
B
∖
R
-1
A
5
3
nfcnv
⊢
Ⅎ
_
x
R
-1
6
5
1
nfima
⊢
Ⅎ
_
x
R
-1
A
7
2
6
nfdif
⊢
Ⅎ
_
x
B
∖
R
-1
A
8
3
7
nfima
⊢
Ⅎ
_
x
R
B
∖
R
-1
A
9
6
8
nfun
⊢
Ⅎ
_
x
R
-1
A
∪
R
B
∖
R
-1
A
10
2
9
nfdif
⊢
Ⅎ
_
x
B
∖
R
-1
A
∪
R
B
∖
R
-1
A
11
10
nfuni
⊢
Ⅎ
_
x
⋃
B
∖
R
-1
A
∪
R
B
∖
R
-1
A
12
4
11
nfcxfr
⊢
Ⅎ
_
x
sup
A
B
R