Metamath Proof Explorer


Theorem nfsymdif

Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses nfsymdif.1 _ x A
nfsymdif.2 _ x B
Assertion nfsymdif _ x A B

Proof

Step Hyp Ref Expression
1 nfsymdif.1 _ x A
2 nfsymdif.2 _ x B
3 df-symdif A B = A B B A
4 1 2 nfdif _ x A B
5 2 1 nfdif _ x B A
6 4 5 nfun _ x A B B A
7 3 6 nfcxfr _ x A B