Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Function transposition
nftpos
Next ⟩
tposoprab
Metamath Proof Explorer
Ascii
Unicode
Theorem
nftpos
Description:
Hypothesis builder for transposition.
(Contributed by
Mario Carneiro
, 10-Sep-2015)
Ref
Expression
Hypothesis
nftpos.1
⊢
Ⅎ
_
x
F
Assertion
nftpos
⊢
Ⅎ
_
x
tpos
F
Proof
Step
Hyp
Ref
Expression
1
nftpos.1
⊢
Ⅎ
_
x
F
2
dftpos4
⊢
tpos
F
=
F
∘
y
∈
V
×
V
∪
∅
⟼
⋃
y
-1
3
nfcv
⊢
Ⅎ
_
x
y
∈
V
×
V
∪
∅
⟼
⋃
y
-1
4
1
3
nfco
⊢
Ⅎ
_
x
F
∘
y
∈
V
×
V
∪
∅
⟼
⋃
y
-1
5
2
4
nfcxfr
⊢
Ⅎ
_
x
tpos
F