Metamath Proof Explorer


Theorem nftpos

Description: Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Hypothesis nftpos.1 _ x F
Assertion nftpos _ x tpos F

Proof

Step Hyp Ref Expression
1 nftpos.1 _ x F
2 dftpos4 tpos F = F y V × V y -1
3 nfcv _ x y V × V y -1
4 1 3 nfco _ x F y V × V y -1
5 2 4 nfcxfr _ x tpos F