Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
The union of two classes
nfunOLD
Metamath Proof Explorer
Description: Obsolete version of nfun as of 14-May-2025. (Contributed by NM , 15-Sep-2003) (Revised by Mario Carneiro , 14-Oct-2016)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Hypotheses
nfun.1
⊢ Ⅎ _ x A
nfun.2
⊢ Ⅎ _ x B
Assertion
nfunOLD
⊢ Ⅎ _ x A ∪ B
Proof
Step
Hyp
Ref
Expression
1
nfun.1
⊢ Ⅎ _ x A
2
nfun.2
⊢ Ⅎ _ x B
3
df-un
⊢ A ∪ B = y | y ∈ A ∨ y ∈ B
4
1
nfcri
⊢ Ⅎ x y ∈ A
5
2
nfcri
⊢ Ⅎ x y ∈ B
6
4 5
nfor
⊢ Ⅎ x y ∈ A ∨ y ∈ B
7
6
nfab
⊢ Ⅎ _ x y | y ∈ A ∨ y ∈ B
8
3 7
nfcxfr
⊢ Ⅎ _ x A ∪ B