Metamath Proof Explorer


Theorem nfunOLD

Description: Obsolete version of nfun as of 14-May-2025. (Contributed by NM, 15-Sep-2003) (Revised by Mario Carneiro, 14-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nfun.1 _ x A
nfun.2 _ x B
Assertion nfunOLD _ x A B

Proof

Step Hyp Ref Expression
1 nfun.1 _ x A
2 nfun.2 _ x B
3 df-un A B = y | y A y B
4 1 nfcri x y A
5 2 nfcri x y B
6 4 5 nfor x y A y B
7 6 nfab _ x y | y A y B
8 3 7 nfcxfr _ x A B