Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The union of a class
nfunid
Next ⟩
nfuni
Metamath Proof Explorer
Ascii
Unicode
Theorem
nfunid
Description:
Deduction version of
nfuni
.
(Contributed by
NM
, 18-Feb-2013)
Ref
Expression
Hypothesis
nfunid.3
⊢
φ
→
Ⅎ
_
x
A
Assertion
nfunid
⊢
φ
→
Ⅎ
_
x
⋃
A
Proof
Step
Hyp
Ref
Expression
1
nfunid.3
⊢
φ
→
Ⅎ
_
x
A
2
dfuni2
⊢
⋃
A
=
y
|
∃
z
∈
A
y
∈
z
3
nfv
⊢
Ⅎ
y
φ
4
nfv
⊢
Ⅎ
z
φ
5
nfvd
⊢
φ
→
Ⅎ
x
y
∈
z
6
4
1
5
nfrexdw
⊢
φ
→
Ⅎ
x
∃
z
∈
A
y
∈
z
7
3
6
nfabdw
⊢
φ
→
Ⅎ
_
x
y
|
∃
z
∈
A
y
∈
z
8
2
7
nfcxfrd
⊢
φ
→
Ⅎ
_
x
⋃
A