Metamath Proof Explorer


Theorem nfvres

Description: The value of a non-member of a restriction is the empty set. (An artifact of our function value definition.) (Contributed by NM, 13-Nov-1995)

Ref Expression
Assertion nfvres ¬ABFBA=

Proof

Step Hyp Ref Expression
1 dmres domFB=BdomF
2 inss1 BdomFB
3 1 2 eqsstri domFBB
4 3 sseli AdomFBAB
5 ndmfv ¬AdomFBFBA=
6 4 5 nsyl5 ¬ABFBA=