Metamath Proof Explorer


Theorem nfxfrd

Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses nfbii.1 φ ψ
nfxfrd.2 χ x ψ
Assertion nfxfrd χ x φ

Proof

Step Hyp Ref Expression
1 nfbii.1 φ ψ
2 nfxfrd.2 χ x ψ
3 1 nfbii x φ x ψ
4 2 3 sylibr χ x φ