Metamath Proof Explorer


Theorem nfxnegd

Description: Deduction version of nfxneg . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis nfxnegd.1 φ _ x A
Assertion nfxnegd φ _ x A

Proof

Step Hyp Ref Expression
1 nfxnegd.1 φ _ x A
2 df-xneg A = if A = +∞ −∞ if A = −∞ +∞ A
3 nfcvd φ _ x +∞
4 1 3 nfeqd φ x A = +∞
5 nfcvd φ _ x −∞
6 1 5 nfeqd φ x A = −∞
7 1 nfnegd φ _ x A
8 6 3 7 nfifd φ _ x if A = −∞ +∞ A
9 4 5 8 nfifd φ _ x if A = +∞ −∞ if A = −∞ +∞ A
10 2 9 nfcxfrd φ _ x A