Step |
Hyp |
Ref |
Expression |
1 |
|
nghmcn.j |
|
2 |
|
nghmcn.k |
|
3 |
|
nghmghm |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
4 5
|
ghmf |
|
7 |
3 6
|
syl |
|
8 |
|
simprr |
|
9 |
|
eqid |
|
10 |
9
|
nghmcl |
|
11 |
|
nghmrcl1 |
|
12 |
|
nghmrcl2 |
|
13 |
9
|
nmoge0 |
|
14 |
11 12 3 13
|
syl3anc |
|
15 |
10 14
|
ge0p1rpd |
|
16 |
15
|
adantr |
|
17 |
8 16
|
rpdivcld |
|
18 |
|
ngpms |
|
19 |
11 18
|
syl |
|
20 |
19
|
ad2antrr |
|
21 |
|
simplrl |
|
22 |
|
simpr |
|
23 |
|
eqid |
|
24 |
4 23
|
mscl |
|
25 |
20 21 22 24
|
syl3anc |
|
26 |
8
|
adantr |
|
27 |
26
|
rpred |
|
28 |
15
|
ad2antrr |
|
29 |
25 27 28
|
ltmuldiv2d |
|
30 |
|
ngpms |
|
31 |
12 30
|
syl |
|
32 |
31
|
ad2antrr |
|
33 |
7
|
ad2antrr |
|
34 |
33 21
|
ffvelrnd |
|
35 |
33 22
|
ffvelrnd |
|
36 |
|
eqid |
|
37 |
5 36
|
mscl |
|
38 |
32 34 35 37
|
syl3anc |
|
39 |
10
|
ad2antrr |
|
40 |
39 25
|
remulcld |
|
41 |
28
|
rpred |
|
42 |
41 25
|
remulcld |
|
43 |
9 4 23 36
|
nmods |
|
44 |
43
|
3expa |
|
45 |
44
|
adantlrr |
|
46 |
|
msxms |
|
47 |
20 46
|
syl |
|
48 |
4 23
|
xmsge0 |
|
49 |
47 21 22 48
|
syl3anc |
|
50 |
39
|
lep1d |
|
51 |
39 41 25 49 50
|
lemul1ad |
|
52 |
38 40 42 45 51
|
letrd |
|
53 |
|
lelttr |
|
54 |
38 42 27 53
|
syl3anc |
|
55 |
52 54
|
mpand |
|
56 |
29 55
|
sylbird |
|
57 |
21 22
|
ovresd |
|
58 |
57
|
breq1d |
|
59 |
34 35
|
ovresd |
|
60 |
59
|
breq1d |
|
61 |
56 58 60
|
3imtr4d |
|
62 |
61
|
ralrimiva |
|
63 |
|
breq2 |
|
64 |
63
|
rspceaimv |
|
65 |
17 62 64
|
syl2anc |
|
66 |
65
|
ralrimivva |
|
67 |
|
eqid |
|
68 |
4 67
|
xmsxmet |
|
69 |
19 46 68
|
3syl |
|
70 |
|
msxms |
|
71 |
|
eqid |
|
72 |
5 71
|
xmsxmet |
|
73 |
31 70 72
|
3syl |
|
74 |
|
eqid |
|
75 |
|
eqid |
|
76 |
74 75
|
metcn |
|
77 |
69 73 76
|
syl2anc |
|
78 |
7 66 77
|
mpbir2and |
|
79 |
1 4 67
|
mstopn |
|
80 |
19 79
|
syl |
|
81 |
2 5 71
|
mstopn |
|
82 |
31 81
|
syl |
|
83 |
80 82
|
oveq12d |
|
84 |
78 83
|
eleqtrrd |
|