Metamath Proof Explorer


Theorem nghmcn

Description: A normed group homomorphism is a continuous function. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses nghmcn.j J = TopOpen S
nghmcn.k K = TopOpen T
Assertion nghmcn F S NGHom T F J Cn K

Proof

Step Hyp Ref Expression
1 nghmcn.j J = TopOpen S
2 nghmcn.k K = TopOpen T
3 nghmghm F S NGHom T F S GrpHom T
4 eqid Base S = Base S
5 eqid Base T = Base T
6 4 5 ghmf F S GrpHom T F : Base S Base T
7 3 6 syl F S NGHom T F : Base S Base T
8 simprr F S NGHom T x Base S r + r +
9 eqid S normOp T = S normOp T
10 9 nghmcl F S NGHom T S normOp T F
11 nghmrcl1 F S NGHom T S NrmGrp
12 nghmrcl2 F S NGHom T T NrmGrp
13 9 nmoge0 S NrmGrp T NrmGrp F S GrpHom T 0 S normOp T F
14 11 12 3 13 syl3anc F S NGHom T 0 S normOp T F
15 10 14 ge0p1rpd F S NGHom T S normOp T F + 1 +
16 15 adantr F S NGHom T x Base S r + S normOp T F + 1 +
17 8 16 rpdivcld F S NGHom T x Base S r + r S normOp T F + 1 +
18 ngpms S NrmGrp S MetSp
19 11 18 syl F S NGHom T S MetSp
20 19 ad2antrr F S NGHom T x Base S r + y Base S S MetSp
21 simplrl F S NGHom T x Base S r + y Base S x Base S
22 simpr F S NGHom T x Base S r + y Base S y Base S
23 eqid dist S = dist S
24 4 23 mscl S MetSp x Base S y Base S x dist S y
25 20 21 22 24 syl3anc F S NGHom T x Base S r + y Base S x dist S y
26 8 adantr F S NGHom T x Base S r + y Base S r +
27 26 rpred F S NGHom T x Base S r + y Base S r
28 15 ad2antrr F S NGHom T x Base S r + y Base S S normOp T F + 1 +
29 25 27 28 ltmuldiv2d F S NGHom T x Base S r + y Base S S normOp T F + 1 x dist S y < r x dist S y < r S normOp T F + 1
30 ngpms T NrmGrp T MetSp
31 12 30 syl F S NGHom T T MetSp
32 31 ad2antrr F S NGHom T x Base S r + y Base S T MetSp
33 7 ad2antrr F S NGHom T x Base S r + y Base S F : Base S Base T
34 33 21 ffvelrnd F S NGHom T x Base S r + y Base S F x Base T
35 33 22 ffvelrnd F S NGHom T x Base S r + y Base S F y Base T
36 eqid dist T = dist T
37 5 36 mscl T MetSp F x Base T F y Base T F x dist T F y
38 32 34 35 37 syl3anc F S NGHom T x Base S r + y Base S F x dist T F y
39 10 ad2antrr F S NGHom T x Base S r + y Base S S normOp T F
40 39 25 remulcld F S NGHom T x Base S r + y Base S S normOp T F x dist S y
41 28 rpred F S NGHom T x Base S r + y Base S S normOp T F + 1
42 41 25 remulcld F S NGHom T x Base S r + y Base S S normOp T F + 1 x dist S y
43 9 4 23 36 nmods F S NGHom T x Base S y Base S F x dist T F y S normOp T F x dist S y
44 43 3expa F S NGHom T x Base S y Base S F x dist T F y S normOp T F x dist S y
45 44 adantlrr F S NGHom T x Base S r + y Base S F x dist T F y S normOp T F x dist S y
46 msxms S MetSp S ∞MetSp
47 20 46 syl F S NGHom T x Base S r + y Base S S ∞MetSp
48 4 23 xmsge0 S ∞MetSp x Base S y Base S 0 x dist S y
49 47 21 22 48 syl3anc F S NGHom T x Base S r + y Base S 0 x dist S y
50 39 lep1d F S NGHom T x Base S r + y Base S S normOp T F S normOp T F + 1
51 39 41 25 49 50 lemul1ad F S NGHom T x Base S r + y Base S S normOp T F x dist S y S normOp T F + 1 x dist S y
52 38 40 42 45 51 letrd F S NGHom T x Base S r + y Base S F x dist T F y S normOp T F + 1 x dist S y
53 lelttr F x dist T F y S normOp T F + 1 x dist S y r F x dist T F y S normOp T F + 1 x dist S y S normOp T F + 1 x dist S y < r F x dist T F y < r
54 38 42 27 53 syl3anc F S NGHom T x Base S r + y Base S F x dist T F y S normOp T F + 1 x dist S y S normOp T F + 1 x dist S y < r F x dist T F y < r
55 52 54 mpand F S NGHom T x Base S r + y Base S S normOp T F + 1 x dist S y < r F x dist T F y < r
56 29 55 sylbird F S NGHom T x Base S r + y Base S x dist S y < r S normOp T F + 1 F x dist T F y < r
57 21 22 ovresd F S NGHom T x Base S r + y Base S x dist S Base S × Base S y = x dist S y
58 57 breq1d F S NGHom T x Base S r + y Base S x dist S Base S × Base S y < r S normOp T F + 1 x dist S y < r S normOp T F + 1
59 34 35 ovresd F S NGHom T x Base S r + y Base S F x dist T Base T × Base T F y = F x dist T F y
60 59 breq1d F S NGHom T x Base S r + y Base S F x dist T Base T × Base T F y < r F x dist T F y < r
61 56 58 60 3imtr4d F S NGHom T x Base S r + y Base S x dist S Base S × Base S y < r S normOp T F + 1 F x dist T Base T × Base T F y < r
62 61 ralrimiva F S NGHom T x Base S r + y Base S x dist S Base S × Base S y < r S normOp T F + 1 F x dist T Base T × Base T F y < r
63 breq2 s = r S normOp T F + 1 x dist S Base S × Base S y < s x dist S Base S × Base S y < r S normOp T F + 1
64 63 rspceaimv r S normOp T F + 1 + y Base S x dist S Base S × Base S y < r S normOp T F + 1 F x dist T Base T × Base T F y < r s + y Base S x dist S Base S × Base S y < s F x dist T Base T × Base T F y < r
65 17 62 64 syl2anc F S NGHom T x Base S r + s + y Base S x dist S Base S × Base S y < s F x dist T Base T × Base T F y < r
66 65 ralrimivva F S NGHom T x Base S r + s + y Base S x dist S Base S × Base S y < s F x dist T Base T × Base T F y < r
67 eqid dist S Base S × Base S = dist S Base S × Base S
68 4 67 xmsxmet S ∞MetSp dist S Base S × Base S ∞Met Base S
69 19 46 68 3syl F S NGHom T dist S Base S × Base S ∞Met Base S
70 msxms T MetSp T ∞MetSp
71 eqid dist T Base T × Base T = dist T Base T × Base T
72 5 71 xmsxmet T ∞MetSp dist T Base T × Base T ∞Met Base T
73 31 70 72 3syl F S NGHom T dist T Base T × Base T ∞Met Base T
74 eqid MetOpen dist S Base S × Base S = MetOpen dist S Base S × Base S
75 eqid MetOpen dist T Base T × Base T = MetOpen dist T Base T × Base T
76 74 75 metcn dist S Base S × Base S ∞Met Base S dist T Base T × Base T ∞Met Base T F MetOpen dist S Base S × Base S Cn MetOpen dist T Base T × Base T F : Base S Base T x Base S r + s + y Base S x dist S Base S × Base S y < s F x dist T Base T × Base T F y < r
77 69 73 76 syl2anc F S NGHom T F MetOpen dist S Base S × Base S Cn MetOpen dist T Base T × Base T F : Base S Base T x Base S r + s + y Base S x dist S Base S × Base S y < s F x dist T Base T × Base T F y < r
78 7 66 77 mpbir2and F S NGHom T F MetOpen dist S Base S × Base S Cn MetOpen dist T Base T × Base T
79 1 4 67 mstopn S MetSp J = MetOpen dist S Base S × Base S
80 19 79 syl F S NGHom T J = MetOpen dist S Base S × Base S
81 2 5 71 mstopn T MetSp K = MetOpen dist T Base T × Base T
82 31 81 syl F S NGHom T K = MetOpen dist T Base T × Base T
83 80 82 oveq12d F S NGHom T J Cn K = MetOpen dist S Base S × Base S Cn MetOpen dist T Base T × Base T
84 78 83 eleqtrrd F S NGHom T F J Cn K