Metamath Proof Explorer


Theorem nghmco

Description: The composition of normed group homomorphisms is a normed group homomorphism. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Assertion nghmco F T NGHom U G S NGHom T F G S NGHom U

Proof

Step Hyp Ref Expression
1 nghmrcl1 G S NGHom T S NrmGrp
2 1 adantl F T NGHom U G S NGHom T S NrmGrp
3 nghmrcl2 F T NGHom U U NrmGrp
4 3 adantr F T NGHom U G S NGHom T U NrmGrp
5 nghmghm F T NGHom U F T GrpHom U
6 nghmghm G S NGHom T G S GrpHom T
7 ghmco F T GrpHom U G S GrpHom T F G S GrpHom U
8 5 6 7 syl2an F T NGHom U G S NGHom T F G S GrpHom U
9 eqid T normOp U = T normOp U
10 9 nghmcl F T NGHom U T normOp U F
11 eqid S normOp T = S normOp T
12 11 nghmcl G S NGHom T S normOp T G
13 remulcl T normOp U F S normOp T G T normOp U F S normOp T G
14 10 12 13 syl2an F T NGHom U G S NGHom T T normOp U F S normOp T G
15 eqid S normOp U = S normOp U
16 15 9 11 nmoco F T NGHom U G S NGHom T S normOp U F G T normOp U F S normOp T G
17 15 bddnghm S NrmGrp U NrmGrp F G S GrpHom U T normOp U F S normOp T G S normOp U F G T normOp U F S normOp T G F G S NGHom U
18 2 4 8 14 16 17 syl32anc F T NGHom U G S NGHom T F G S NGHom U