Metamath Proof Explorer


Theorem nghmfval

Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis nmofval.1 N = S normOp T
Assertion nghmfval S NGHom T = N -1

Proof

Step Hyp Ref Expression
1 nmofval.1 N = S normOp T
2 oveq12 s = S t = T s normOp t = S normOp T
3 2 1 eqtr4di s = S t = T s normOp t = N
4 3 cnveqd s = S t = T s normOp t -1 = N -1
5 4 imaeq1d s = S t = T s normOp t -1 = N -1
6 df-nghm NGHom = s NrmGrp , t NrmGrp s normOp t -1
7 1 ovexi N V
8 7 cnvex N -1 V
9 8 imaex N -1 V
10 5 6 9 ovmpoa S NrmGrp T NrmGrp S NGHom T = N -1
11 6 mpondm0 ¬ S NrmGrp T NrmGrp S NGHom T =
12 nmoffn normOp Fn NrmGrp × NrmGrp
13 12 fndmi dom normOp = NrmGrp × NrmGrp
14 13 ndmov ¬ S NrmGrp T NrmGrp S normOp T =
15 1 14 syl5eq ¬ S NrmGrp T NrmGrp N =
16 15 cnveqd ¬ S NrmGrp T NrmGrp N -1 = -1
17 cnv0 -1 =
18 16 17 eqtrdi ¬ S NrmGrp T NrmGrp N -1 =
19 18 imaeq1d ¬ S NrmGrp T NrmGrp N -1 =
20 0ima =
21 19 20 eqtrdi ¬ S NrmGrp T NrmGrp N -1 =
22 11 21 eqtr4d ¬ S NrmGrp T NrmGrp S NGHom T = N -1
23 10 22 pm2.61i S NGHom T = N -1