Metamath Proof Explorer


Theorem nghmplusg

Description: The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypothesis nghmplusg.p + ˙ = + T
Assertion nghmplusg T Abel F S NGHom T G S NGHom T F + ˙ f G S NGHom T

Proof

Step Hyp Ref Expression
1 nghmplusg.p + ˙ = + T
2 nghmrcl1 F S NGHom T S NrmGrp
3 2 3ad2ant2 T Abel F S NGHom T G S NGHom T S NrmGrp
4 nghmrcl2 F S NGHom T T NrmGrp
5 4 3ad2ant2 T Abel F S NGHom T G S NGHom T T NrmGrp
6 id T Abel T Abel
7 nghmghm F S NGHom T F S GrpHom T
8 nghmghm G S NGHom T G S GrpHom T
9 1 ghmplusg T Abel F S GrpHom T G S GrpHom T F + ˙ f G S GrpHom T
10 6 7 8 9 syl3an T Abel F S NGHom T G S NGHom T F + ˙ f G S GrpHom T
11 eqid S normOp T = S normOp T
12 11 nghmcl F S NGHom T S normOp T F
13 12 3ad2ant2 T Abel F S NGHom T G S NGHom T S normOp T F
14 11 nghmcl G S NGHom T S normOp T G
15 14 3ad2ant3 T Abel F S NGHom T G S NGHom T S normOp T G
16 13 15 readdcld T Abel F S NGHom T G S NGHom T S normOp T F + S normOp T G
17 11 1 nmotri T Abel F S NGHom T G S NGHom T S normOp T F + ˙ f G S normOp T F + S normOp T G
18 11 bddnghm S NrmGrp T NrmGrp F + ˙ f G S GrpHom T S normOp T F + S normOp T G S normOp T F + ˙ f G S normOp T F + S normOp T G F + ˙ f G S NGHom T
19 3 5 10 16 17 18 syl32anc T Abel F S NGHom T G S NGHom T F + ˙ f G S NGHom T