Metamath Proof Explorer


Theorem nghmrcl2

Description: Reverse closure for a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Assertion nghmrcl2 F S NGHom T T NrmGrp

Proof

Step Hyp Ref Expression
1 eqid S normOp T = S normOp T
2 1 isnghm F S NGHom T S NrmGrp T NrmGrp F S GrpHom T S normOp T F
3 2 simplbi F S NGHom T S NrmGrp T NrmGrp
4 3 simprd F S NGHom T T NrmGrp