Metamath Proof Explorer


Theorem ngnmcncn

Description: The norm of a normed group is a continuous function to CC . (Contributed by NM, 12-Aug-2007) (Revised by AV, 17-Oct-2021)

Ref Expression
Hypotheses nmcn.n N = norm G
nmcn.j J = TopOpen G
ngnmcncn.k K = TopOpen fld
Assertion ngnmcncn G NrmGrp N J Cn K

Proof

Step Hyp Ref Expression
1 nmcn.n N = norm G
2 nmcn.j J = TopOpen G
3 ngnmcncn.k K = TopOpen fld
4 3 cnfldtop K Top
5 cnrest2r K Top J Cn K 𝑡 J Cn K
6 4 5 ax-mp J Cn K 𝑡 J Cn K
7 3 tgioo2 topGen ran . = K 𝑡
8 7 eqcomi K 𝑡 = topGen ran .
9 1 2 8 nmcn G NrmGrp N J Cn K 𝑡
10 6 9 sselid G NrmGrp N J Cn K