Metamath Proof Explorer


Theorem ngpds

Description: Value of the distance function in terms of the norm of a normed group. Equation 1 of Kreyszig p. 59. (Contributed by NM, 28-Nov-2006) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses ngpds.n N = norm G
ngpds.x X = Base G
ngpds.m - ˙ = - G
ngpds.d D = dist G
Assertion ngpds G NrmGrp A X B X A D B = N A - ˙ B

Proof

Step Hyp Ref Expression
1 ngpds.n N = norm G
2 ngpds.x X = Base G
3 ngpds.m - ˙ = - G
4 ngpds.d D = dist G
5 eqid D X × X = D X × X
6 1 3 4 2 5 isngp2 G NrmGrp G Grp G MetSp N - ˙ = D X × X
7 6 simp3bi G NrmGrp N - ˙ = D X × X
8 7 3ad2ant1 G NrmGrp A X B X N - ˙ = D X × X
9 8 oveqd G NrmGrp A X B X A N - ˙ B = A D X × X B
10 ngpgrp G NrmGrp G Grp
11 2 3 grpsubf G Grp - ˙ : X × X X
12 10 11 syl G NrmGrp - ˙ : X × X X
13 12 3ad2ant1 G NrmGrp A X B X - ˙ : X × X X
14 opelxpi A X B X A B X × X
15 14 3adant1 G NrmGrp A X B X A B X × X
16 fvco3 - ˙ : X × X X A B X × X N - ˙ A B = N - ˙ A B
17 13 15 16 syl2anc G NrmGrp A X B X N - ˙ A B = N - ˙ A B
18 df-ov A N - ˙ B = N - ˙ A B
19 df-ov A - ˙ B = - ˙ A B
20 19 fveq2i N A - ˙ B = N - ˙ A B
21 17 18 20 3eqtr4g G NrmGrp A X B X A N - ˙ B = N A - ˙ B
22 ovres A X B X A D X × X B = A D B
23 22 3adant1 G NrmGrp A X B X A D X × X B = A D B
24 9 21 23 3eqtr3rd G NrmGrp A X B X A D B = N A - ˙ B