Metamath Proof Explorer


Theorem ngpdsr

Description: Value of the distance function in terms of the norm of a normed group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses ngpds.n N = norm G
ngpds.x X = Base G
ngpds.m - ˙ = - G
ngpds.d D = dist G
Assertion ngpdsr G NrmGrp A X B X A D B = N B - ˙ A

Proof

Step Hyp Ref Expression
1 ngpds.n N = norm G
2 ngpds.x X = Base G
3 ngpds.m - ˙ = - G
4 ngpds.d D = dist G
5 ngpxms G NrmGrp G ∞MetSp
6 2 4 xmssym G ∞MetSp A X B X A D B = B D A
7 5 6 syl3an1 G NrmGrp A X B X A D B = B D A
8 1 2 3 4 ngpds G NrmGrp B X A X B D A = N B - ˙ A
9 8 3com23 G NrmGrp A X B X B D A = N B - ˙ A
10 7 9 eqtrd G NrmGrp A X B X A D B = N B - ˙ A