Metamath Proof Explorer


Theorem ngpi

Description: The properties of a normed group, which is a group accompanied by a norm. (Contributed by AV, 7-Oct-2021)

Ref Expression
Hypotheses ngpi.v V = Base W
ngpi.n N = norm W
ngpi.m - ˙ = - W
ngpi.0 0 ˙ = 0 W
Assertion ngpi W NrmGrp W Grp N : V x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y

Proof

Step Hyp Ref Expression
1 ngpi.v V = Base W
2 ngpi.n N = norm W
3 ngpi.m - ˙ = - W
4 ngpi.0 0 ˙ = 0 W
5 ngpgrp W NrmGrp W Grp
6 1 2 nmf W NrmGrp N : V
7 1 2 4 nmeq0 W NrmGrp x V N x = 0 x = 0 ˙
8 1 2 3 nmmtri W NrmGrp x V y V N x - ˙ y N x + N y
9 8 3expa W NrmGrp x V y V N x - ˙ y N x + N y
10 9 ralrimiva W NrmGrp x V y V N x - ˙ y N x + N y
11 7 10 jca W NrmGrp x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y
12 11 ralrimiva W NrmGrp x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y
13 5 6 12 3jca W NrmGrp W Grp N : V x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y