Metamath Proof Explorer


Theorem ngprcan

Description: Cancel right addition inside a distance calculation. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses ngprcan.x X = Base G
ngprcan.p + ˙ = + G
ngprcan.d D = dist G
Assertion ngprcan G NrmGrp A X B X C X A + ˙ C D B + ˙ C = A D B

Proof

Step Hyp Ref Expression
1 ngprcan.x X = Base G
2 ngprcan.p + ˙ = + G
3 ngprcan.d D = dist G
4 ngpgrp G NrmGrp G Grp
5 eqid - G = - G
6 1 2 5 grppnpcan2 G Grp A X B X C X A + ˙ C - G B + ˙ C = A - G B
7 4 6 sylan G NrmGrp A X B X C X A + ˙ C - G B + ˙ C = A - G B
8 7 fveq2d G NrmGrp A X B X C X norm G A + ˙ C - G B + ˙ C = norm G A - G B
9 simpl G NrmGrp A X B X C X G NrmGrp
10 4 adantr G NrmGrp A X B X C X G Grp
11 simpr1 G NrmGrp A X B X C X A X
12 simpr3 G NrmGrp A X B X C X C X
13 1 2 grpcl G Grp A X C X A + ˙ C X
14 10 11 12 13 syl3anc G NrmGrp A X B X C X A + ˙ C X
15 simpr2 G NrmGrp A X B X C X B X
16 1 2 grpcl G Grp B X C X B + ˙ C X
17 10 15 12 16 syl3anc G NrmGrp A X B X C X B + ˙ C X
18 eqid norm G = norm G
19 18 1 5 3 ngpds G NrmGrp A + ˙ C X B + ˙ C X A + ˙ C D B + ˙ C = norm G A + ˙ C - G B + ˙ C
20 9 14 17 19 syl3anc G NrmGrp A X B X C X A + ˙ C D B + ˙ C = norm G A + ˙ C - G B + ˙ C
21 18 1 5 3 ngpds G NrmGrp A X B X A D B = norm G A - G B
22 9 11 15 21 syl3anc G NrmGrp A X B X C X A D B = norm G A - G B
23 8 20 22 3eqtr4d G NrmGrp A X B X C X A + ˙ C D B + ˙ C = A D B