Metamath Proof Explorer


Theorem ngtmnft

Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006)

Ref Expression
Assertion ngtmnft A * A = −∞ ¬ −∞ < A

Proof

Step Hyp Ref Expression
1 mnfxr −∞ *
2 xrltnr −∞ * ¬ −∞ < −∞
3 1 2 ax-mp ¬ −∞ < −∞
4 breq2 A = −∞ −∞ < A −∞ < −∞
5 3 4 mtbiri A = −∞ ¬ −∞ < A
6 mnfle A * −∞ A
7 xrleloe −∞ * A * −∞ A −∞ < A −∞ = A
8 1 7 mpan A * −∞ A −∞ < A −∞ = A
9 6 8 mpbid A * −∞ < A −∞ = A
10 9 ord A * ¬ −∞ < A −∞ = A
11 eqcom −∞ = A A = −∞
12 10 11 syl6ib A * ¬ −∞ < A A = −∞
13 5 12 impbid2 A * A = −∞ ¬ −∞ < A