Metamath Proof Explorer


Theorem nimnbi2

Description: If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypothesis nimnbi2.1 ¬ ψ φ
Assertion nimnbi2 ¬ φ ψ

Proof

Step Hyp Ref Expression
1 nimnbi2.1 ¬ ψ φ
2 biimpr φ ψ ψ φ
3 1 2 mto ¬ φ ψ