Metamath Proof Explorer


Theorem nlelchi

Description: The null space of a continuous linear functional is a closed subspace. Remark 3.8 of Beran p. 103. (Contributed by NM, 11-Feb-2006) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses nlelch.1 T LinFn
nlelch.2 T ContFn
Assertion nlelchi null T C

Proof

Step Hyp Ref Expression
1 nlelch.1 T LinFn
2 nlelch.2 T ContFn
3 1 nlelshi null T S
4 vex x V
5 4 hlimveci f v x x
6 5 adantl f : null T f v x x
7 eqid TopOpen fld = TopOpen fld
8 7 cnfldhaus TopOpen fld Haus
9 8 a1i f : null T f v x TopOpen fld Haus
10 eqid + norm = + norm
11 eqid norm - = norm -
12 10 11 hhims norm - = IndMet + norm
13 eqid MetOpen norm - = MetOpen norm -
14 10 12 13 hhlm v = t MetOpen norm -
15 resss t MetOpen norm - t MetOpen norm -
16 14 15 eqsstri v t MetOpen norm -
17 16 ssbri f v x f t MetOpen norm - x
18 17 adantl f : null T f v x f t MetOpen norm - x
19 11 13 7 hhcnf ContFn = MetOpen norm - Cn TopOpen fld
20 2 19 eleqtri T MetOpen norm - Cn TopOpen fld
21 20 a1i f : null T f v x T MetOpen norm - Cn TopOpen fld
22 18 21 lmcn f : null T f v x T f t TopOpen fld T x
23 1 lnfnfi T :
24 ffvelrn f : null T n f n null T
25 24 adantlr f : null T f v x n f n null T
26 elnlfn2 T : f n null T T f n = 0
27 23 25 26 sylancr f : null T f v x n T f n = 0
28 fvco3 f : null T n T f n = T f n
29 28 adantlr f : null T f v x n T f n = T f n
30 c0ex 0 V
31 30 fvconst2 n × 0 n = 0
32 31 adantl f : null T f v x n × 0 n = 0
33 27 29 32 3eqtr4d f : null T f v x n T f n = × 0 n
34 33 ralrimiva f : null T f v x n T f n = × 0 n
35 ffn T : T Fn
36 23 35 ax-mp T Fn
37 simpl f : null T f v x f : null T
38 3 shssii null T
39 fss f : null T null T f :
40 37 38 39 sylancl f : null T f v x f :
41 fnfco T Fn f : T f Fn
42 36 40 41 sylancr f : null T f v x T f Fn
43 30 fconst × 0 : 0
44 ffn × 0 : 0 × 0 Fn
45 43 44 ax-mp × 0 Fn
46 eqfnfv T f Fn × 0 Fn T f = × 0 n T f n = × 0 n
47 42 45 46 sylancl f : null T f v x T f = × 0 n T f n = × 0 n
48 34 47 mpbird f : null T f v x T f = × 0
49 7 cnfldtopon TopOpen fld TopOn
50 49 a1i f : null T f v x TopOpen fld TopOn
51 0cnd f : null T f v x 0
52 1zzd f : null T f v x 1
53 nnuz = 1
54 53 lmconst TopOpen fld TopOn 0 1 × 0 t TopOpen fld 0
55 50 51 52 54 syl3anc f : null T f v x × 0 t TopOpen fld 0
56 48 55 eqbrtrd f : null T f v x T f t TopOpen fld 0
57 9 22 56 lmmo f : null T f v x T x = 0
58 elnlfn T : x null T x T x = 0
59 23 58 ax-mp x null T x T x = 0
60 6 57 59 sylanbrc f : null T f v x x null T
61 60 gen2 f x f : null T f v x x null T
62 isch2 null T C null T S f x f : null T f v x x null T
63 3 61 62 mpbir2an null T C