Metamath Proof Explorer


Theorem nleltd

Description: 'Not less than or equal to' implies 'grater than'. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses nleltd.1 φ A
nleltd.2 φ B
nleltd.3 φ ¬ B A
Assertion nleltd φ A < B

Proof

Step Hyp Ref Expression
1 nleltd.1 φ A
2 nleltd.2 φ B
3 nleltd.3 φ ¬ B A
4 1 2 ltnled φ A < B ¬ B A
5 3 4 mpbird φ A < B