Metamath Proof Explorer


Theorem nlfnval

Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nlfnval T : null T = T -1 0

Proof

Step Hyp Ref Expression
1 cnex V
2 ax-hilex V
3 1 2 elmap T T :
4 cnvexg T T -1 V
5 imaexg T -1 V T -1 0 V
6 4 5 syl T T -1 0 V
7 cnveq t = T t -1 = T -1
8 7 imaeq1d t = T t -1 0 = T -1 0
9 df-nlfn null = t t -1 0
10 8 9 fvmptg T T -1 0 V null T = T -1 0
11 6 10 mpdan T null T = T -1 0
12 3 11 sylbir T : null T = T -1 0