Metamath Proof Explorer


Theorem nlim2

Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion nlim2 ¬ Lim 2 𝑜

Proof

Step Hyp Ref Expression
1 1oex 1 𝑜 V
2 1 prid2 1 𝑜 1 𝑜
3 df2o3 2 𝑜 = 1 𝑜
4 2 3 eleqtrri 1 𝑜 2 𝑜
5 1on 1 𝑜 On
6 5 onirri ¬ 1 𝑜 1 𝑜
7 eleq2 2 𝑜 = 1 𝑜 1 𝑜 2 𝑜 1 𝑜 1 𝑜
8 6 7 mtbiri 2 𝑜 = 1 𝑜 ¬ 1 𝑜 2 𝑜
9 4 8 mt2 ¬ 2 𝑜 = 1 𝑜
10 9 neir 2 𝑜 1 𝑜
11 3 unieqi 2 𝑜 = 1 𝑜
12 0ex V
13 12 1 unipr 1 𝑜 = 1 𝑜
14 0un 1 𝑜 = 1 𝑜
15 11 13 14 3eqtri 2 𝑜 = 1 𝑜
16 10 15 neeqtrri 2 𝑜 2 𝑜
17 16 neii ¬ 2 𝑜 = 2 𝑜
18 simp3 Ord 2 𝑜 2 𝑜 2 𝑜 = 2 𝑜 2 𝑜 = 2 𝑜
19 17 18 mto ¬ Ord 2 𝑜 2 𝑜 2 𝑜 = 2 𝑜
20 df-lim Lim 2 𝑜 Ord 2 𝑜 2 𝑜 2 𝑜 = 2 𝑜
21 19 20 mtbir ¬ Lim 2 𝑜