Metamath Proof Explorer


Theorem nlimsucg

Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion nlimsucg A V ¬ Lim suc A

Proof

Step Hyp Ref Expression
1 limord Lim suc A Ord suc A
2 ordsuc Ord A Ord suc A
3 1 2 sylibr Lim suc A Ord A
4 limuni Lim suc A suc A = suc A
5 ordunisuc Ord A suc A = A
6 5 eqeq2d Ord A suc A = suc A suc A = A
7 ordirr Ord A ¬ A A
8 eleq2 suc A = A A suc A A A
9 8 notbid suc A = A ¬ A suc A ¬ A A
10 7 9 syl5ibrcom Ord A suc A = A ¬ A suc A
11 sucidg A V A suc A
12 11 con3i ¬ A suc A ¬ A V
13 10 12 syl6 Ord A suc A = A ¬ A V
14 6 13 sylbid Ord A suc A = suc A ¬ A V
15 3 4 14 sylc Lim suc A ¬ A V
16 15 con2i A V ¬ Lim suc A