Metamath Proof Explorer


Theorem nllyeq

Description: Equality theorem for the Locally A predicate. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion nllyeq A = B N-Locally A = N-Locally B

Proof

Step Hyp Ref Expression
1 eleq2 A = B j 𝑡 u A j 𝑡 u B
2 1 rexbidv A = B u nei j y 𝒫 x j 𝑡 u A u nei j y 𝒫 x j 𝑡 u B
3 2 2ralbidv A = B x j y x u nei j y 𝒫 x j 𝑡 u A x j y x u nei j y 𝒫 x j 𝑡 u B
4 3 rabbidv A = B j Top | x j y x u nei j y 𝒫 x j 𝑡 u A = j Top | x j y x u nei j y 𝒫 x j 𝑡 u B
5 df-nlly N-Locally A = j Top | x j y x u nei j y 𝒫 x j 𝑡 u A
6 df-nlly N-Locally B = j Top | x j y x u nei j y 𝒫 x j 𝑡 u B
7 4 5 6 3eqtr4g A = B N-Locally A = N-Locally B