Metamath Proof Explorer


Theorem nllyidm

Description: Idempotence of the "n-locally" predicate, i.e. being "n-locally A " is a local property. (Use loclly to show N-Locally N-Locally A = N-Locally A .) (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion nllyidm Locally N-Locally A = N-Locally A

Proof

Step Hyp Ref Expression
1 llytop j Locally N-Locally A j Top
2 llyi j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A
3 simprr3 j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A j 𝑡 u N-Locally A
4 simprl j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A u j
5 ssidd j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A u u
6 simpl1 j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A j Locally N-Locally A
7 6 1 syl j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A j Top
8 restopn2 j Top u j u j 𝑡 u u j u u
9 7 4 8 syl2anc j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A u j 𝑡 u u j u u
10 4 5 9 mpbir2and j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A u j 𝑡 u
11 simprr2 j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A y u
12 nlly2i j 𝑡 u N-Locally A u j 𝑡 u y u v 𝒫 u z j 𝑡 u y z z v j 𝑡 u 𝑡 v A
13 3 10 11 12 syl3anc j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j 𝑡 u y z z v j 𝑡 u 𝑡 v A
14 restopn2 j Top u j z j 𝑡 u z j z u
15 7 4 14 syl2anc j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A z j 𝑡 u z j z u
16 15 adantr j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j 𝑡 u z j z u
17 7 adantr j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A j Top
18 simpr2l j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A z j
19 simpr31 j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A y z
20 opnneip j Top z j y z z nei j y
21 17 18 19 20 syl3anc j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A z nei j y
22 simpr32 j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A z v
23 simpr1 j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A v 𝒫 u
24 23 elpwid j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A v u
25 4 adantr j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A u j
26 elssuni u j u j
27 25 26 syl j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A u j
28 24 27 sstrd j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A v j
29 eqid j = j
30 29 ssnei2 j Top z nei j y z v v j v nei j y
31 17 21 22 28 30 syl22anc j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A v nei j y
32 simprr1 j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A u x
33 32 adantr j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A u x
34 24 33 sstrd j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A v x
35 velpw v 𝒫 x v x
36 34 35 sylibr j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A v 𝒫 x
37 31 36 elind j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A v nei j y 𝒫 x
38 restabs j Top v u u j j 𝑡 u 𝑡 v = j 𝑡 v
39 17 24 25 38 syl3anc j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A j 𝑡 u 𝑡 v = j 𝑡 v
40 simpr33 j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A j 𝑡 u 𝑡 v A
41 39 40 eqeltrrd j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A j 𝑡 v A
42 37 41 jca j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A v nei j y 𝒫 x j 𝑡 v A
43 42 3exp2 j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A v nei j y 𝒫 x j 𝑡 v A
44 43 imp j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j z u y z z v j 𝑡 u 𝑡 v A v nei j y 𝒫 x j 𝑡 v A
45 16 44 sylbid j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j 𝑡 u y z z v j 𝑡 u 𝑡 v A v nei j y 𝒫 x j 𝑡 v A
46 45 rexlimdv j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j 𝑡 u y z z v j 𝑡 u 𝑡 v A v nei j y 𝒫 x j 𝑡 v A
47 46 expimpd j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j 𝑡 u y z z v j 𝑡 u 𝑡 v A v nei j y 𝒫 x j 𝑡 v A
48 47 reximdv2 j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v 𝒫 u z j 𝑡 u y z z v j 𝑡 u 𝑡 v A v nei j y 𝒫 x j 𝑡 v A
49 13 48 mpd j Locally N-Locally A x j y x u j u x y u j 𝑡 u N-Locally A v nei j y 𝒫 x j 𝑡 v A
50 2 49 rexlimddv j Locally N-Locally A x j y x v nei j y 𝒫 x j 𝑡 v A
51 50 3expb j Locally N-Locally A x j y x v nei j y 𝒫 x j 𝑡 v A
52 51 ralrimivva j Locally N-Locally A x j y x v nei j y 𝒫 x j 𝑡 v A
53 isnlly j N-Locally A j Top x j y x v nei j y 𝒫 x j 𝑡 v A
54 1 52 53 sylanbrc j Locally N-Locally A j N-Locally A
55 54 ssriv Locally N-Locally A N-Locally A
56 nllyrest j N-Locally A x j j 𝑡 x N-Locally A
57 56 adantl j N-Locally A x j j 𝑡 x N-Locally A
58 nllytop j N-Locally A j Top
59 58 ssriv N-Locally A Top
60 59 a1i N-Locally A Top
61 57 60 restlly N-Locally A Locally N-Locally A
62 61 mptru N-Locally A Locally N-Locally A
63 55 62 eqssi Locally N-Locally A = N-Locally A