Metamath Proof Explorer


Theorem nllyrest

Description: An open subspace of an n-locally A space is also n-locally A . (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion nllyrest J N-Locally A B J J 𝑡 B N-Locally A

Proof

Step Hyp Ref Expression
1 nllytop J N-Locally A J Top
2 resttop J Top B J J 𝑡 B Top
3 1 2 sylan J N-Locally A B J J 𝑡 B Top
4 restopn2 J Top B J x J 𝑡 B x J x B
5 1 4 sylan J N-Locally A B J x J 𝑡 B x J x B
6 simp1l J N-Locally A B J x J x B y x J N-Locally A
7 simp2l J N-Locally A B J x J x B y x x J
8 simp3 J N-Locally A B J x J x B y x y x
9 nlly2i J N-Locally A x J y x s 𝒫 x u J y u u s J 𝑡 s A
10 6 7 8 9 syl3anc J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A
11 3 3ad2ant1 J N-Locally A B J x J x B y x J 𝑡 B Top
12 11 3ad2ant1 J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A J 𝑡 B Top
13 simp3l J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A u J
14 simp3r2 J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A u s
15 simp2 J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A s 𝒫 x
16 15 elpwid J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A s x
17 simp12r J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A x B
18 16 17 sstrd J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A s B
19 14 18 sstrd J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A u B
20 6 3ad2ant1 J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A J N-Locally A
21 20 1 syl J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A J Top
22 simp11r J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A B J
23 restopn2 J Top B J u J 𝑡 B u J u B
24 21 22 23 syl2anc J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A u J 𝑡 B u J u B
25 13 19 24 mpbir2and J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A u J 𝑡 B
26 simp3r1 J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A y u
27 opnneip J 𝑡 B Top u J 𝑡 B y u u nei J 𝑡 B y
28 12 25 26 27 syl3anc J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A u nei J 𝑡 B y
29 elssuni B J B J
30 22 29 syl J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A B J
31 eqid J = J
32 31 restuni J Top B J B = J 𝑡 B
33 21 30 32 syl2anc J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A B = J 𝑡 B
34 18 33 sseqtrd J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A s J 𝑡 B
35 eqid J 𝑡 B = J 𝑡 B
36 35 ssnei2 J 𝑡 B Top u nei J 𝑡 B y u s s J 𝑡 B s nei J 𝑡 B y
37 12 28 14 34 36 syl22anc J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A s nei J 𝑡 B y
38 37 15 elind J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A s nei J 𝑡 B y 𝒫 x
39 restabs J Top s B B J J 𝑡 B 𝑡 s = J 𝑡 s
40 21 18 22 39 syl3anc J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A J 𝑡 B 𝑡 s = J 𝑡 s
41 simp3r3 J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A J 𝑡 s A
42 40 41 eqeltrd J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A J 𝑡 B 𝑡 s A
43 38 42 jca J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A s nei J 𝑡 B y 𝒫 x J 𝑡 B 𝑡 s A
44 43 3expa J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A s nei J 𝑡 B y 𝒫 x J 𝑡 B 𝑡 s A
45 44 rexlimdvaa J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A s nei J 𝑡 B y 𝒫 x J 𝑡 B 𝑡 s A
46 45 expimpd J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A s nei J 𝑡 B y 𝒫 x J 𝑡 B 𝑡 s A
47 46 reximdv2 J N-Locally A B J x J x B y x s 𝒫 x u J y u u s J 𝑡 s A s nei J 𝑡 B y 𝒫 x J 𝑡 B 𝑡 s A
48 10 47 mpd J N-Locally A B J x J x B y x s nei J 𝑡 B y 𝒫 x J 𝑡 B 𝑡 s A
49 48 3expa J N-Locally A B J x J x B y x s nei J 𝑡 B y 𝒫 x J 𝑡 B 𝑡 s A
50 49 ralrimiva J N-Locally A B J x J x B y x s nei J 𝑡 B y 𝒫 x J 𝑡 B 𝑡 s A
51 50 ex J N-Locally A B J x J x B y x s nei J 𝑡 B y 𝒫 x J 𝑡 B 𝑡 s A
52 5 51 sylbid J N-Locally A B J x J 𝑡 B y x s nei J 𝑡 B y 𝒫 x J 𝑡 B 𝑡 s A
53 52 ralrimiv J N-Locally A B J x J 𝑡 B y x s nei J 𝑡 B y 𝒫 x J 𝑡 B 𝑡 s A
54 isnlly J 𝑡 B N-Locally A J 𝑡 B Top x J 𝑡 B y x s nei J 𝑡 B y 𝒫 x J 𝑡 B 𝑡 s A
55 3 53 54 sylanbrc J N-Locally A B J J 𝑡 B N-Locally A