Metamath Proof Explorer


Theorem nllyss

Description: The "n-locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion nllyss A B N-Locally A N-Locally B

Proof

Step Hyp Ref Expression
1 ssel A B j 𝑡 u A j 𝑡 u B
2 1 reximdv A B u nei j y 𝒫 x j 𝑡 u A u nei j y 𝒫 x j 𝑡 u B
3 2 ralimdv A B y x u nei j y 𝒫 x j 𝑡 u A y x u nei j y 𝒫 x j 𝑡 u B
4 3 ralimdv A B x j y x u nei j y 𝒫 x j 𝑡 u A x j y x u nei j y 𝒫 x j 𝑡 u B
5 4 anim2d A B j Top x j y x u nei j y 𝒫 x j 𝑡 u A j Top x j y x u nei j y 𝒫 x j 𝑡 u B
6 isnlly j N-Locally A j Top x j y x u nei j y 𝒫 x j 𝑡 u A
7 isnlly j N-Locally B j Top x j y x u nei j y 𝒫 x j 𝑡 u B
8 5 6 7 3imtr4g A B j N-Locally A j N-Locally B
9 8 ssrdv A B N-Locally A N-Locally B