Database
BASIC TOPOLOGY
Metric spaces
Normed algebraic structures
nlmlmod
Next ⟩
nlmnrg
Metamath Proof Explorer
Ascii
Unicode
Theorem
nlmlmod
Description:
A normed module is a left module.
(Contributed by
Mario Carneiro
, 4-Oct-2015)
Ref
Expression
Assertion
nlmlmod
⊢
W
∈
NrmMod
→
W
∈
LMod
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
W
=
Base
W
2
eqid
⊢
norm
⁡
W
=
norm
⁡
W
3
eqid
⊢
⋅
W
=
⋅
W
4
eqid
⊢
Scalar
⁡
W
=
Scalar
⁡
W
5
eqid
⊢
Base
Scalar
⁡
W
=
Base
Scalar
⁡
W
6
eqid
⊢
norm
⁡
Scalar
⁡
W
=
norm
⁡
Scalar
⁡
W
7
1
2
3
4
5
6
isnlm
⊢
W
∈
NrmMod
↔
W
∈
NrmGrp
∧
W
∈
LMod
∧
Scalar
⁡
W
∈
NrmRing
∧
∀
x
∈
Base
Scalar
⁡
W
∀
y
∈
Base
W
norm
⁡
W
⁡
x
⋅
W
y
=
norm
⁡
Scalar
⁡
W
⁡
x
⁢
norm
⁡
W
⁡
y
8
7
simplbi
⊢
W
∈
NrmMod
→
W
∈
NrmGrp
∧
W
∈
LMod
∧
Scalar
⁡
W
∈
NrmRing
9
8
simp2d
⊢
W
∈
NrmMod
→
W
∈
LMod