Metamath Proof Explorer


Theorem nlmngp

Description: A normed module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion nlmngp W NrmMod W NrmGrp

Proof

Step Hyp Ref Expression
1 eqid Base W = Base W
2 eqid norm W = norm W
3 eqid W = W
4 eqid Scalar W = Scalar W
5 eqid Base Scalar W = Base Scalar W
6 eqid norm Scalar W = norm Scalar W
7 1 2 3 4 5 6 isnlm W NrmMod W NrmGrp W LMod Scalar W NrmRing x Base Scalar W y Base W norm W x W y = norm Scalar W x norm W y
8 7 simplbi W NrmMod W NrmGrp W LMod Scalar W NrmRing
9 8 simp1d W NrmMod W NrmGrp